(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: Duplicate
public class Duplicate{

public static int round (int x) {

if (x % 2 == 0) return x;
else return x+1;
}


public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();

while ((x > y) && (y > 2)) {
x++;
y = 2*y;

}
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Duplicate.main([Ljava/lang/String;)V: Graph of 163 nodes with 1 SCC.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 15 rules for P and 5 rules for R.


Combined rules. Obtained 1 rules for P and 0 rules for R.


Filtered ground terms:


723_0_main_Load(x1, x2, x3, x4) → 723_0_main_Load(x2, x3, x4)
Cond_723_0_main_Load(x1, x2, x3, x4, x5) → Cond_723_0_main_Load(x1, x3, x4, x5)

Filtered duplicate args:


723_0_main_Load(x1, x2, x3) → 723_0_main_Load(x2, x3)
Cond_723_0_main_Load(x1, x2, x3, x4) → Cond_723_0_main_Load(x1, x3, x4)

Combined rules. Obtained 1 rules for P and 0 rules for R.


Finished conversion. Obtained 1 rules for P and 0 rules for R. System has predefined symbols.


(4) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 723_0_MAIN_LOAD(x1[0], x0[0]) → COND_723_0_MAIN_LOAD(x1[0] > 2 && x1[0] < x0[0] && x0[0] >= 0, x1[0], x0[0])
(1): COND_723_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 723_0_MAIN_LOAD(2 * x1[1], x0[1] + 1)

(0) -> (1), if ((x1[0] > 2 && x1[0] < x0[0] && x0[0] >= 0* TRUE)∧(x1[0]* x1[1])∧(x0[0]* x0[1]))


(1) -> (0), if ((2 * x1[1]* x1[0])∧(x0[1] + 1* x0[0]))



The set Q is empty.

(5) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 723_0_MAIN_LOAD(x1, x0) → COND_723_0_MAIN_LOAD(&&(&&(>(x1, 2), <(x1, x0)), >=(x0, 0)), x1, x0) the following chains were created:
  • We consider the chain 723_0_MAIN_LOAD(x1[0], x0[0]) → COND_723_0_MAIN_LOAD(&&(&&(>(x1[0], 2), <(x1[0], x0[0])), >=(x0[0], 0)), x1[0], x0[0]), COND_723_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 723_0_MAIN_LOAD(*(2, x1[1]), +(x0[1], 1)) which results in the following constraint:

    (1)    (&&(&&(>(x1[0], 2), <(x1[0], x0[0])), >=(x0[0], 0))=TRUEx1[0]=x1[1]x0[0]=x0[1]723_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧723_0_MAIN_LOAD(x1[0], x0[0])≥COND_723_0_MAIN_LOAD(&&(&&(>(x1[0], 2), <(x1[0], x0[0])), >=(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_723_0_MAIN_LOAD(&&(&&(>(x1[0], 2), <(x1[0], x0[0])), >=(x0[0], 0)), x1[0], x0[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>=(x0[0], 0)=TRUE>(x1[0], 2)=TRUE<(x1[0], x0[0])=TRUE723_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧723_0_MAIN_LOAD(x1[0], x0[0])≥COND_723_0_MAIN_LOAD(&&(&&(>(x1[0], 2), <(x1[0], x0[0])), >=(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_723_0_MAIN_LOAD(&&(&&(>(x1[0], 2), <(x1[0], x0[0])), >=(x0[0], 0)), x1[0], x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] ≥ 0∧x1[0] + [-3] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_723_0_MAIN_LOAD(&&(&&(>(x1[0], 2), <(x1[0], x0[0])), >=(x0[0], 0)), x1[0], x0[0])), ≥)∧[(2)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] + [(-1)bni_14]x1[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] ≥ 0∧x1[0] + [-3] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_723_0_MAIN_LOAD(&&(&&(>(x1[0], 2), <(x1[0], x0[0])), >=(x0[0], 0)), x1[0], x0[0])), ≥)∧[(2)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] + [(-1)bni_14]x1[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] ≥ 0∧x1[0] + [-3] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_723_0_MAIN_LOAD(&&(&&(>(x1[0], 2), <(x1[0], x0[0])), >=(x0[0], 0)), x1[0], x0[0])), ≥)∧[(2)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] + [(-1)bni_14]x1[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    ([1] + x1[0] + x0[0] ≥ 0∧x1[0] + [-3] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_723_0_MAIN_LOAD(&&(&&(>(x1[0], 2), <(x1[0], x0[0])), >=(x0[0], 0)), x1[0], x0[0])), ≥)∧[(3)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    ([4] + x1[0] + x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_723_0_MAIN_LOAD(&&(&&(>(x1[0], 2), <(x1[0], x0[0])), >=(x0[0], 0)), x1[0], x0[0])), ≥)∧[(3)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)







For Pair COND_723_0_MAIN_LOAD(TRUE, x1, x0) → 723_0_MAIN_LOAD(*(2, x1), +(x0, 1)) the following chains were created:
  • We consider the chain 723_0_MAIN_LOAD(x1[0], x0[0]) → COND_723_0_MAIN_LOAD(&&(&&(>(x1[0], 2), <(x1[0], x0[0])), >=(x0[0], 0)), x1[0], x0[0]), COND_723_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 723_0_MAIN_LOAD(*(2, x1[1]), +(x0[1], 1)), 723_0_MAIN_LOAD(x1[0], x0[0]) → COND_723_0_MAIN_LOAD(&&(&&(>(x1[0], 2), <(x1[0], x0[0])), >=(x0[0], 0)), x1[0], x0[0]) which results in the following constraint:

    (8)    (&&(&&(>(x1[0], 2), <(x1[0], x0[0])), >=(x0[0], 0))=TRUEx1[0]=x1[1]x0[0]=x0[1]*(2, x1[1])=x1[0]1+(x0[1], 1)=x0[0]1COND_723_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥NonInfC∧COND_723_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥723_0_MAIN_LOAD(*(2, x1[1]), +(x0[1], 1))∧(UIncreasing(723_0_MAIN_LOAD(*(2, x1[1]), +(x0[1], 1))), ≥))



    We simplified constraint (8) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (9)    (>=(x0[0], 0)=TRUE>(x1[0], 2)=TRUE<(x1[0], x0[0])=TRUECOND_723_0_MAIN_LOAD(TRUE, x1[0], x0[0])≥NonInfC∧COND_723_0_MAIN_LOAD(TRUE, x1[0], x0[0])≥723_0_MAIN_LOAD(*(2, x1[0]), +(x0[0], 1))∧(UIncreasing(723_0_MAIN_LOAD(*(2, x1[1]), +(x0[1], 1))), ≥))



    We simplified constraint (9) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (10)    (x0[0] ≥ 0∧x1[0] + [-3] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(723_0_MAIN_LOAD(*(2, x1[1]), +(x0[1], 1))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] + [(-1)bni_16]x1[0] ≥ 0∧[-3 + (-1)bso_17] + x1[0] ≥ 0)



    We simplified constraint (10) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (11)    (x0[0] ≥ 0∧x1[0] + [-3] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(723_0_MAIN_LOAD(*(2, x1[1]), +(x0[1], 1))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] + [(-1)bni_16]x1[0] ≥ 0∧[-3 + (-1)bso_17] + x1[0] ≥ 0)



    We simplified constraint (11) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (12)    (x0[0] ≥ 0∧x1[0] + [-3] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(723_0_MAIN_LOAD(*(2, x1[1]), +(x0[1], 1))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] + [(-1)bni_16]x1[0] ≥ 0∧[-3 + (-1)bso_17] + x1[0] ≥ 0)



    We simplified constraint (12) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (13)    ([1] + x1[0] + x0[0] ≥ 0∧x1[0] + [-3] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(723_0_MAIN_LOAD(*(2, x1[1]), +(x0[1], 1))), ≥)∧[(-1)Bound*bni_16 + bni_16] + [bni_16]x0[0] ≥ 0∧[-3 + (-1)bso_17] + x1[0] ≥ 0)



    We simplified constraint (13) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (14)    ([4] + x1[0] + x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(723_0_MAIN_LOAD(*(2, x1[1]), +(x0[1], 1))), ≥)∧[(-1)Bound*bni_16 + bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] + x1[0] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 723_0_MAIN_LOAD(x1, x0) → COND_723_0_MAIN_LOAD(&&(&&(>(x1, 2), <(x1, x0)), >=(x0, 0)), x1, x0)
    • ([4] + x1[0] + x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_723_0_MAIN_LOAD(&&(&&(>(x1[0], 2), <(x1[0], x0[0])), >=(x0[0], 0)), x1[0], x0[0])), ≥)∧[(3)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)

  • COND_723_0_MAIN_LOAD(TRUE, x1, x0) → 723_0_MAIN_LOAD(*(2, x1), +(x0, 1))
    • ([4] + x1[0] + x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(723_0_MAIN_LOAD(*(2, x1[1]), +(x0[1], 1))), ≥)∧[(-1)Bound*bni_16 + bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] + x1[0] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = [1]   
POL(FALSE) = 0   
POL(723_0_MAIN_LOAD(x1, x2)) = [2] + x2 + [-1]x1   
POL(COND_723_0_MAIN_LOAD(x1, x2, x3)) = [-1] + x3 + [-1]x2 + x1   
POL(&&(x1, x2)) = [2]   
POL(>(x1, x2)) = [-1]   
POL(2) = [2]   
POL(<(x1, x2)) = [-1]   
POL(>=(x1, x2)) = [-1]   
POL(0) = 0   
POL(*(x1, x2)) = x1·x2   
POL(+(x1, x2)) = x1 + x2   
POL(1) = [1]   

The following pairs are in P>:

723_0_MAIN_LOAD(x1[0], x0[0]) → COND_723_0_MAIN_LOAD(&&(&&(>(x1[0], 2), <(x1[0], x0[0])), >=(x0[0], 0)), x1[0], x0[0])

The following pairs are in Pbound:

723_0_MAIN_LOAD(x1[0], x0[0]) → COND_723_0_MAIN_LOAD(&&(&&(>(x1[0], 2), <(x1[0], x0[0])), >=(x0[0], 0)), x1[0], x0[0])
COND_723_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 723_0_MAIN_LOAD(*(2, x1[1]), +(x0[1], 1))

The following pairs are in P:

COND_723_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 723_0_MAIN_LOAD(*(2, x1[1]), +(x0[1], 1))

At least the following rules have been oriented under context sensitive arithmetic replacement:

&&(TRUE, TRUE)1TRUE1
&&(TRUE, FALSE)1FALSE1
&&(FALSE, TRUE)1FALSE1
&&(FALSE, FALSE)1FALSE1

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_723_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 723_0_MAIN_LOAD(2 * x1[1], x0[1] + 1)


The set Q is empty.

(7) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(8) TRUE